Flow Cytometry for the Assessment of Animal Sperm Integrity and Functionality State of the Art
1. Shenk MK. Fertility and fecundity. Whelehan P, Bolin A, editorsThe international encyclopedia of man sexuality. Hoboken, NJ, U.s.a.: Wiley-Blackwell; 2015. p. 369–426.
ii. Wood JW. Fecundity and natural fertility in humans. Oxf Rev Reprod Biol 1989; 11:61–109.
3. Wang C, Swerdloff RS. Limitations of semen assay as a test of male person fertility and anticipated needs from newer tests. Fertil Steril 2014; 102:1502–vii. https://doi.org/10.1016/j.fertnstert.2014.x.021
4. de Kretser DM, Baker HWG. Infertility in men: recent advances and standing controversies. J Clin Endocrinol Metab 1999; 84:3443–fifty. https://doi.org/10.1210/jcem.84.10.6101
5. Binsila B, Selvaraju South, Somashekar L, et al. Molecular advances in semen quality assessment and improving fertility in bulls—a review. Indian J Anim Reprod 2018; 39:1–10.
6. Patel AS, Leong JY, Ramasamy R. Prediction of male person infertility by the World Health Organization laboratory manual for assessment of semen analysis: A systematic review. Arab J Urol 2018; 16:96–102. https://doi.org/10.1016/j.aju.2017.ten.005
7. Aitken RJ, Best FS, Richardson DW, Djahanbakhch O, Templeton A, Lees MM. An analysis of semen quality and sperm function in cases of oligozoospermia. Fertil Steril 1982; 38:705–11. https://doi.org/10.1016/S0015-0282(16)46698-7
viii. Lemack GE, Goldstein M. Presence of sperm in the pre-vasectomy reversal semen assay: incidence and implications. J Urol 1996; 155:167–9. https://doi.org/10.1016/S0022-5347(01)66584-4
9. Menkveld R. Clinical significance of the depression normal sperm morphology value every bit proposed in the fifth edition of the WHO Laboratory Manual for the Exam and Processing of Homo Semen. Asian J Androl 2010; 12:47–58. https://doi.org/10.1038/aja.2009.fourteen
10. Hoflack Chiliad, Opsomer Chiliad, Rijsselaere T, et al. Comparison of reckoner-assisted sperm motility analysis parameters in semen from belgian bluish and Holstein–Friesian bulls. Reprod Domest Anim 2007; 42:153–61. https://doi.org/10.1111/j.1439-0531.2006.00745.x
xi. Veeramachaneni DN, Ott RS, Heath EH, McEntee M, Commodities DJ, Hixon JE. Pathophysiology of small testes in beef bulls: human relationship between scrotal circumference, histopathologic features of testes and epididymides, seminal characteristics, and endocrine profiles. Am J Vet Res 1986; 47:1988–99.
12. Bruner KA, Van Camp SD. Assessment of the reproductive system of the male ruminant. Vet Clin Due north Am Food Anim Pract 1992; 8:331–45. https://doi.org/x.1016/s0749-0720(15)30738-vi
sixteen. Eo Y, Kim SH, Bang S-G, Oh MG, Park CH, Yoon JT. Effect of Extenders with TCG and DMSO on the Viability of Rabbit Sperm. J Anim Reprod Biotechnol 2019; 34:100–5. https://doi.org/10.12750/JARB.34.2.100
eighteen. Hajjar C, Sampuda KM, Boyd 50. Dual roles for ubiquitination in the processing of sperm organelles after fertilization. BMC Dev Biol 2014; fourteen:6 https://doi.org/ten.1186/1471-213X-14-6
xix. Barbagallo F, Vignera SL, Cannarella R, Aversa A, Calogero AE, Condorelli RA. Evaluation of sperm mitochondrial office: a primal organelle for sperm motility. J Clin Med 2020; ix:363 https://doi.org/ten.3390/jcm9020363
20. Connor We, Lin DS, Wolf DP, Alexander M. Uneven distribution of desmosterol and docosahexaenoic acid in the heads and tails of monkey sperm. J Lipid Res 1998; 39:1404–eleven. https://doi.org/10.1016/S0022-2275(20)32521-nine
21. Hughes CM, Lewis SE, McKelvey-Martin VJ, Thompson West. A comparison of baseline and induced DNA impairment in human spermatozoa from fertile and infertile men, using a modified comet assay. Mol Hum Reprod 1996; 2:613–nine. https://doi.org/10.1093/molehr/ii.8.613
22. Inoue N, Satouh Y, Ikawa M, Okabe 1000, Yanagimachi R. Acrosome-reacted mouse spermatozoa recovered from the perivitelline space can fertilize other eggs. Proc Natl Acad Sci USA 2011; 108:20008–11. https://doi.org/ten.1073/pnas.1116965108
23. DeJarnette JM, Marshall CE, Lenz RW, Monke DR, Ayars WH, Sattler CG. Sustaining the fertility of artificially inseminated dairy cattle: the function of the artificial insemination industry. J Dairy Sci 2004; 87:E93–E104. https://doi.org/x.3168/jds.S0022-0302(04)70065-10
25. Selvaraju Southward, Parthipan Due south, Somashekar L, et al. Electric current condition of sperm functional genomics and its diagnostic potential of fertility in bovine (Bos taurus). Syst Biol Reprod Med 2018; 64:484–501. https://doi.org/x.1080/19396368.2018.1444816
26. Karoui S, Díaz C, Serrano M, Cue R, Celorrio I, Carabaño MJ. Fourth dimension trends, environmental factors and genetic footing of semen traits collected in Holstein bulls under commercial atmospheric condition. Anim Reprod Sci 2011; 124:28–38. https://doi.org/10.1016/j.anireprosci.2011.02.008
27. Verstegen J, Iguer-Ouada M, Onclin K. Computer assisted semen analyzers in andrology inquiry and veterinary practice. Theriogenology 2002; 57:149–79. https://doi.org/10.1016/S0093-691X(01)00664-1
29. Nallella KP, Sharma RK, Aziz Due north, Agarwal A. Significance of sperm characteristics in the evaluation of male infertility. Fertil Steril 2006; 85:629–34. https://doi.org/ten.1016/j.fertnstert.2005.08.024
30. Groen AF, Steine T, Colleau J-J, Pedersen J, Pribyl J, Reinsch North. Economical values in dairy cattle breeding, with special reference to functional traits. Report of an EAAP-working group. Livest Prod Sci 1997; 49:i–21. https://doi.org/10.1016/S0301-6226(97)00041-nine
32. Mahmoud AM, Depoorter B, Piens N, Comhaire FH. The performance of 10 different methods for the estimation of sperm concentration. Fertil Steril 1997; 68:340–v. https://doi.org/10.1016/S0015-0282(97)81526-9
34. Christensen P, Hansen C, Liboriussen T, Lehn-Jensen H. Implementation of flow cytometry for quality control in four Danish balderdash studs. Anim Reprod Sci 2005; 85:201–viii. https://doi.org/10.1016/j.anireprosci.2004.04.038
35. Anzar M, Kroetsch T, Buhr MM. Comparing of unlike methods for assessment of sperm concentration and membrane integrity with balderdash semen. J Androl 2009; xxx:661–8. https://doi.org/10.2164/jandrol.108.007500
36. Prathalingam NS, Holt WW, Revell SG, Jones S, Watson PF. The precision and accuracy of 6 different methods to decide sperm concentration. J Androl 2006; 27:257–62. https://doi.org/ten.2164/jandrol.05112
37. Eggert-Kruse Due west, Schwarz H, Rohr Thou, Demirakca T, Tilgen W, Runnebaum B. Sperm morphology assessment using strict criteria and male fertility under in-vivo conditions of conception. Hum Reprod 1996; 11:139–46. https://doi.org/x.1093/oxfordjournals.humrep.a019007
38. Eggert-Kruse Westward, Reimann-Andersen J, Rohr G, Pohl South, Tilgen W, Runnebaum B. Clinical relevance of sperm morphology assessment using strict criteria and relationship with sperm-fungus interaction in vivo and in vitro . Fertil Steril 1995; 63:612–24. https://doi.org/10.1016/S0015-0282(16)57435-4
40. Donnelly ET, Lewis SE, McNally JA, Thompson Westward. In vitro fertilization and pregnancy rates: the influence of sperm motility and morphology on IVF outcome. Fertil Steril 1998; 70:305–14. https://doi.org/10.1016/S0015-0282(98)00146-0
42. Rijsselaere T, Van Soom A, Hoflack Thou, Maes D, de Kruif A. Automated sperm morphometry and morphology analysis of canine semen by the Hamilton-Thorne analyser. Theriogenology 2004; 62:1292–306. https://doi.org/10.1016/j.theriogenology.2004.01.005
43. Cuche E, Marquet P, Depeursinge C. Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms. Appl Opt 1999; 38:6994–7001. https://doi.org/10.1364/AO.38.006994
45. Eskenazi B, Wyrobek AJ, Sloter E, et al. The association of age and semen quality in healthy men. Hum Reprod 2003; xviii:447–54. https://doi.org/10.1093/humrep/deg107
46. Yoshida Thou, Kawano N, Yoshida K. Control of sperm motion and fertility: diverse factors and mutual mechanisms. Prison cell Mol Life Sci 2008; 65:3446–57. https://doi.org/x.1007/s00018-008-8230-z
47. Ren D, Navarro B, Perez Yard, et al. A sperm ion channel required for sperm motility and male fertility. Nature 2001; 413:603–9. https://doi.org/10.1038/35098027
49. Shen Southward, Wang J, Liang J, He D. Comparative proteomic study between human normal motility sperm and idiopathic asthenozoospermia. World J Urol 2013; 31:1395–401. https://doi.org/10.1007/s00345-013-1023-5
l. Hering DM, Olenski K, Kaminski S. Genome-wide association study for poor sperm motility in Holstein-Friesian bulls. Anim Reprod Sci 2014; 146:89–97. https://doi.org/10.1016/j.anireprosci.2014.01.012
51. Iranpour FG, Nasr-Esfahani MH, Valojerdi MR, Al-Taraihi TMT. Chromomycin A3 staining as a useful tool for evaluation of male fertility. J Assist Reprod Genet 2000; 17:60–6. https://doi.org/10.1023/A:1009406231811
52. Simon L, Lewis SEM. Sperm Deoxyribonucleic acid damage or progressive motion: which one is the better predictor of fertilization in vitro? Syst Biol Reprod Med 2011; 57:133–8. https://doi.org/ten.3109/19396368.2011.553984
53. Cabrillana ME, Monclus MA, Lancellotti TES, et al. Thiols of flagellar proteins are essential for progressive move in human spermatozoa. Reprod Fertil Dev 2017; 29:1435–46. https://doi.org/10.1071/rd16225
55. Morisawa S, Mizuta T, Kubokawa K, Tanaka H, Morisawa M. Acrosome reaction in spermatozoa from the amphioxus acrosome reaction in Branchiostoma belcheri (Cephalochordata, Chordata). Zool Sci 2004; 21:1079–84. https://doi.org/10.2108/zsj.21.1079
56. Okamura N, Tajima Y, Soejima A, Masuda H, Sugita Y. Sodium bicarbonate in seminal plasma stimulates the motility of mammalian spermatozoa through direct activation of adenylate cyclase. J Biol Chem 1985; 260:9699–705.
57. Hess KC, Jones BH, Marquez B, et al. The "soluble" adenylyl cyclase in sperm mediates multiple signaling events required for fertilization. Developmental Cell 2005; 9:249–59. https://doi.org/ten.1016/j.devcel.2005.06.007
58. Elbashir S, Magdi Y, Rashed A, et al. Relationship between sperm progressive motility and Dna integrity in fertile and infertile men. Center East Fertil Soc J 2018; 23:195–8. https://doi.org/ten.1016/j.mefs.2017.12.002
60. Vantman D, Banks SM, Koukoulis G, Dennison L, Sherins RJ. Assessment of sperm motility characteristics from fertile and infertile men using a fully automated computer-assisted semen analyzer. Fertil Steril 1989; 51:156–61. https://doi.org/10.1016/S0015-0282(xvi)60446-6
61. Günzel-Apel A, Günther C, Terhaer P, Bader H. Figurer-assisted analysis of motility, velocity and linearity of domestic dog spermatozoa. J Reprod Fertil Supplement 1993; 47:271–eight.
62. van der Horst G. Reckoner Aided Sperm Assay (CASA) in domestic animals: current status, 3 D tracking and flagellar assay. Anim Reprod Sci. 2020. 106350 https://doi.org/10.1016/j.anireprosci.2020.106350
63. Katz DF, Davis RO, Delandmeter BA, Overstreet JW. Existent-time analysis of sperm motility using automatic video image digitization. Comput Methods Programs Biomed 1985; 21:173–82. https://doi.org/ten.1016/0169-2607(85)90002-ane
65. Farrell P, Presicce G, Brockett C, Foote R. Quantification of bull sperm characteristics measured by computer-assisted sperm analysis (CASA) and the relationship to fertility. Theriogenology 1998; 49:871–nine. https://doi.org/ten.1016/S0093-691X(98)00036-3
66. England G, Allen W. Factors affecting the viability of canine spermatozoa: 2. Effects of seminal plasma and blood. Theriogenology 1992; 37:373–81. https://doi.org/10.1016/0093-691X(92)90195-Due west
67. Moruzzi JF, Wyrobek AJ, Mayall BH, Gledhill BL. Quantification and classification of human being sperm morphology by computer-assisted image analysis. Fertil Steril 1988; 50:142–52. https://doi.org/10.1016/S0015-0282(16)60022-v
68. Gravance CG, Champion Z, Liu IK, Casey PJ. Sperm head morphometry analysis of ejaculate and dismount stallion semen samples. Anim Reprod Sci 1997; 47:149–55. https://doi.org/ten.1016/s0378-4320(96)01634-ten
69. Larsen L, Scheike T, Jensen TK, et al. Computer-assisted semen analysis parameters as predictors for fertility of men from the general population. Hum Reprod 2000; 15:1562–7. https://doi.org/10.1093/humrep/15.7.1562
70. Hirano Y, Shibahara H, Obara H, et al. Andrology: Relationships betwixt sperm motility characteristics assessed by the computer-aided sperm analysis (CASA) and fertilization rates in vitro . J Assist Reprod Genet 2001; 18:215–20. https://doi.org/x.1023/A:1009420432234
71. Gallagher MT, Cupples G, Ooi EH, Kirkman-Brown J, Smith D. Rapid sperm capture: loftier-throughput flagellar waveform analysis. Hum Reprod 2019; 34:1173–85. https://doi.org/ten.1093/humrep/dez056
72. Bartoov B, Ben-Barak J, Mayevsky A, et al. Sperm motility alphabetize: a new parameter for human sperm evaluation. Fertil Steril 1991; 56:108–12. https://doi.org/10.1016/S0015-0282(16)54427-6
73. Rijsselaere T, Van Soom A, Maes D, de Kruif A. Issue of centrifugation on in vitro survival of fresh diluted canine spermatozoa. Theriogenology 2002; 57:1669–81. https://doi.org/10.1016/S0093-691X(02)00663-5
76. Maes D, Mateusen B, Rijsselaere T, et al. Move characteristics of boar spermatozoa later on addition of prostaglandin F2α. Theriogenology 2003; 60:1435–43. https://doi.org/ten.1016/S0093-691X(03)00132-8
77. Rijsselaere T, Van Soom A, Maes D, de Kruif A. Effect of technical settings on canine semen motility parameters measured by the Hamilton-Thorne analyzer. Theriogenology 2003; 60:1553–68. https://doi.org/x.1016/S0093-691X(03)00171-7
78. Nagy Á, Polichronopoulos T, Gáspárdy A, Solti Fifty, Cseh Due south. Correlation betwixt bull fertility and sperm cell velocity parameters generated by estimator-assisted semen analysis. Acta Vet Hung 2015; 63:370–81. https://doi.org/10.1556/004.2015.035
79. Byrd W, Bradshaw Yard, Carr B, et al. A prospective randomized study of pregnancy rates following intrauterine and intracervical insemination using frozen donor sperm. Fertil Steril 1990; 53:521–vii. http://doi.org/doi.org/10.1016/S0015-0282(16)53351-two
80. Krause W. Figurer-assisted semen analysis systems: comparison with routine evaluation and prognostic value in male fertility and assisted reproduction. Hum Reprod 1995; 10:60–half dozen. https://doi.org/10.1093/humrep/x.suppl_1.60
81. Soler C, García-Molina A, Sancho Thou, et al. A new technique for analysis of man sperm morphology in unstained cells from raw semen. Reprod Fertil Dev 2016; 28:428–33. https://doi.org/10.1071/RD14087
82. Gallagher MT, Smith D, Kirkman-Brownish J. CASA: tracking the past and plotting the future. Reprod Fertil Dev 2018; thirty:867–74. https://doi.org/10.1071/RD17420
83. Støstad HN, Johnsen A, Lifjeld JT, Rowe M. Sperm caput morphology is associated with sperm pond speed: a comparative written report of songbirds using electron microscopy. Evol 2018; 72:1918–32. https://doi.org/10.1111/evo.13555
84. Maroto-Morales A, Garcia-Alvarez O, Ramón M, et al. Electric current condition and potential of morphometric sperm assay. Asian J Androl 2016; 18:863 https://doi.org/10.4103/1008-682X.187581
85. Budworth PR, Amann RP, Chapman PL. Relationships between computerized measurements of motion of frozen-thawed balderdash spermatozoa and fertility. J Androl 1988; nine:41–54. https://doi.org/10.1002/j.1939-4640.1988.tb01007.x
86. Samper J, Hellander J, Crabo B. Relationship between the fertility of fresh and frozen stallion semen and semen quality. J Reprod Fertil Supplement 1991; 44:107
87. Santolaria P, Vicente-Fiel Southward, Palacín I, et al. Predictive chapters of sperm quality parameters and sperm subpopulations on field fertility subsequently bogus insemination in sheep. Anim Reprod Sci 2015; 163:82–eight. https://doi.org/10.1016/j.anireprosci.2015.10.001
88. Viudes-de-Castro MP, Mocé E, Vicente J, Marco-Jiménez F, Lavara R. In vitro evaluation of in vivo fertilizing ability of frozen rabbit semen. Reprod Domest Anim 2005; 40:136–xl. https://doi.org/ten.1111/j.1439-0531.2005.00568.x
89. Broekhuijse MLWJ, Šoštarić E, Feitsma H, Gadella BM. Application of estimator-assisted semen assay to explain variations in pig fertility. J Anim Sci 2012; 90:779–89. https://doi.org/x.2527/jas.2011-4311
90. Tardif S, Laforest J-P, Cormier N, Bailey JL. The importance of porcine sperm parameters on fertility in vivo . Theriogenology 1999; 52:447–59. https://doi.org/x.1016/S0093-691X(99)00142-9
91. Gil MC, García-Herreros M, Barón FJ, Aparicio IM, Santos AJ, García-Marín LJ. Morphometry of porcine spermatozoa and its functional significance in relation with the motility parameters in fresh semen. Theriogenology 2009; 71:254–63. https://doi.org/10.1016/j.theriogenology.2008.07.007
92. Bompart D, García-Molina A, Valverde A, et al. CASA-Mot technology: how results are affected by the frame rate and counting chamber. Reprod Fertil Dev 2018; 30:810–9. https://doi.org/10.1071/RD17551
94. Holt C, Holt WV, Moore HDM. Choice of operating weather to minimize sperm subpopulation sampling bias in the assessment of boar semen by computer-assisted semen analysis. J Androl 1996; 17:587–96. https://doi.org/10.1002/j.1939-4640.1996.tb01837.x
95. Betancourt Thousand, Reséndiz A. Effect of 2 insecticides and two herbicides on the porcine sperm movement patterns using computer-assisted semen analysis (CASA) in vitro . Reprod Toxicol 2006; 22:508–12. https://doi.org/10.1016/j.reprotox.2006.03.001
96. Broekhuijse MLWJ, Šoštarić E, Feitsma H, Gadella BM. Additional value of computer assisted semen analysis (CASA) compared to conventional motility assessments in grunter artificial insemination. Theriogenology 2011; 76:1473–86.e1. https://doi.org/10.1016/j.theriogenology.2011.05.040
97. Tomlinson MJ. Uncertainty of measurement and clinical value of semen analysis: has standardisation through professional guidelines helped or hindered progress? Andrology 2016; 4:763–70. https://doi.org/10.1111/andr.12209
99. Wakimoto Y, Fukui A, Kojima T, Hasegawa A, Shigeta 1000, Shibahara H. Application of estimator-aided sperm analysis (CASA) for detecting sperm-immobilizing antibody. Am J Reprod Immunol 2018; 79:e12814 https://doi.org/10.1111/aji.12814
100. van der Horst M, Maree L, du Plessis Stefan S. Current perspectives of CASA applications in various mammalian spermatozoa. Reprod Fertil Dev 2018; xxx:875–88. https://doi.org/10.1071/RD17468
101. De Andrade AFC, De Arruda RP, Celeghini ECC, et al. Fluorescent stain method for the simultaneous decision of mitochondrial potential and integrity of plasma and acrosomal membranes in boar sperm. Reprod Domest Anim 2007; 42:190–4. https://doi.org/x.1111/j.1439-0531.2006.00751.x
102. Rahman MM, Naher North, Isam MM, et al. Natural vs synchronized estrus: determinants of successful pregnancy in ewes using frozen-thawed Suffolk semen. J Anim Reprod Biotechnol 2020; 35:183–9. https://doi.org/10.12750/JARB.35.2.183
104. Jha PK, Alam MGS, Mansur MAA, et al. Furnishings of number of frozen-thawed ram sperm and number of inseminations on fertility in synchronized ewes under field condition. J Anim Reprod Biotechnol 2020; 35:190–7. https://doi.org/10.12750/JARB.35.two.190
105. Kang SS, Kim UH, Lee MS, Lee SD, Cho SR. Spermatozoa move, viability, acrosome integrity, mitochondrial membrane potential and plasma membrane integrity in 0.25 mL and 0.5 mL straw afterward frozen-thawing in Hanwoo balderdash. J Anim Reprod Biotechnol 2020; 35:307–14. https://doi.org/10.12750/JARB.35.4.307
107. Yániz JL, Santolaria P, Marco-Aguado MA, López-Gatius F. Use of image analysis to assess the plasma membrane integrity of ram spermatozoa in different diluents. Theriogenology 2008; seventy:192–8. https://doi.org/x.1016/j.theriogenology.2008.03.002
108. Qamar AY, Fang X, Kim MJ, Cho J. Myoinositol supplementation of freezing medium improves the quality-related parameters of domestic dog sperm. Animals (Basel) 2019; 9:1038 https://doi.org/10.3390/ani9121038
109. Mahiddine FY, Qamar AY, Kim MJ. Canine amniotic membrane derived mesenchymal stem cells exosomes addition in canine sperm freezing medium. J Anim Reprod Biotechnol 2020; 35:268–72. https://doi.org/10.12750/JARB.35.3.268
110. Qamar AY, Fang X, Kim MJ, Cho J. Improved viability and fertility of frozen-thawed dog sperm using adipose-derived mesenchymal stem cells. Sci Rep 2020; ten:7034 https://doi.org/ten.1038/s41598-020-61803-8
111. Qamar AY, Fang 10, Kim MJ, Cho J. Improved post-thaw quality of canine semen later treatment with exosomes from conditioned medium of adipose-derived mesenchymal stem cells. Animals (Basel) 2019; 9:865 https://doi.org/10.3390/ani9110865
112. Garner DL, Pinkel D, Johnson LA, Pace MM. Assessment of spermatozoal role using dual fluorescent staining and flow cytometric analyses. Biol Reprod 1986; 34:127–38. https://doi.org/10.1095/biolreprod34.ane.127
113. Harrison RAP, Vickers SE. Use of fluorescent probes to assess membrane integrity in mammalian spermatozoa. Reproduction 1990; 88:343–52. https://doi.org/ten.1530/jrf.0.0880343
114. Pintado B, De La Fuente J, Roldan Due east. Permeability of boar and bull spermatozoa to the nucleic acid stains propidium iodide or Hoechst 33258, or to eosin: accuracy in the cess of prison cell viability. J Reprod Fertil 2000; 118:145–52.
115. Qamar AY, Fang 10, Blindside Southward, Kim MJ, Cho J. Effects of kinetin supplementation on the post-thaw motility, viability, and structural integrity of dog sperm. Cryobiology 2020; 95:90–6. https://doi.org/10.1016/j.cryobiol.2020.05.015
116. Garner DL, Johnson LA. Viability cess of mammalian sperm using SYBR-14 and propidium iodide. Biol Reprod 1995; 53:276–84. https://doi.org/10.1095/biolreprod53.two.276
117. Alm Chiliad, Taponen J, Dahlbom M, Tuunainen E, Koskinen E, Andersson M. A novel automated fluorometric assay to evaluate sperm viability and fertility in dairy bulls. Theriogenology 2001; 56:677–84. https://doi.org/ten.1016/S0093-691X(01)00599-iv
118. Qamar AY, Fang 10, Bang S, Shin ST, Cho J. The upshot of astaxanthin supplementation on the post-thaw quality of dog semen. Reprod Domest Anim 2020; 55:1163–71. https://doi.org/10.1111/rda.13758
119. Schäfer-Somi Southward, Aurich C. Apply of a new calculator-assisted sperm analyzer for the assessment of motion and viability of dog spermatozoa and evaluation of four different semen extenders for predilution. Anim Reprod Sci 2007; 102:1–13. https://doi.org/10.1016/j.anireprosci.2005.03.019
120. Hossain MS, Johannisson A, Wallgren Thousand, Nagy Southward, Siqueira AP, Rodriguez-Martinez H. Flow cytometry for the assessment of animate being sperm integrity and functionality: state of the art. Asian J Androl 2011; 13:406–nineteen. https://doi.org/10.1038/aja.2011.xv
121. Campbell R, Dott H, Glover T. Nigrosin eosin as a stain for differentiating live and expressionless spermatozoa. J Agric Sci 1956; 48:1–8. https://doi.org/ten.1017/S002185960003029X
122. Fraser LR, Quinn PJ. A glycolytic product is obligatory for initiation of the sperm acrosome reaction and whiplash motility required for fertilization in the mouse. Reproduction 1981; 61:25–35. https://doi.org/x.1530/jrf.0.0610025
123. Buffone MG, Foster JA, Gerton GL. The function of the acrosomal matrix in fertilization. Int J Dev Biol 2008; 52:511–22. https://doi.org/x.1387/ijdb.072532mb
124. Rajabi-Toustani R, Akter QS, Almadaly EA, et al. Methodological improvement of fluorescein isothiocyanate peanut agglutinin (FITC-PNA) acrosomal integrity staining for frozen-thawed Japanese Black bull spermatozoa. J Vet Med Sci 2019; 81:694–702. https://doi.org/ten.1292/jvms.eighteen-0560
125. Cross NL, Meizel S. Minireview: methods for evaluating the acrosomal status of mammalian sperm. Biol Reprod 1989; 41:635–41. https://doi.org/ten.1095/biolreprod41.iv.635
126. Ahmad M, Nasrullah R, Riaz H, Sattar A, Ahmad N. Changes in movement, morphology, plasma membrane and acrosome integrity during stages of cryopreservation of buck sperm. J S Afr Vet Assoc 2014; 85:a972 https://doi.org/10.4102/jsava.v85i1.972
128. Mendoza C, Carreras A, Moos J, Tesarik J. Distinction between true acrosome reaction and degenerative acrosome loss by a one-pace staining method using Pisum sativum agglutinin. Reproduction 1992; 95:755–63. https://doi.org/10.1530/jrf.0.0950755
129. Mortimer D, Curtis EF, Miller RG. Specific labelling by peanut agglutinin of the outer acrosomal membrane of the man spermatozoon. Reproduction 1987; 81:127–35. https://doi.org/10.1530/jrf.0.0810127
130. Kishida K, Sakase K, Minami K, et al. Effects of acrosomal conditions of frozen-thawed spermatozoa on the results of artificial insemination in Japanese Blackness cattle. J Reprod Dev 2015; 61:519–24. https://doi.org/x.1262/jrd.2015-073
131. Amaral A, Lourenço B, Marques M, Ramalho-Santos J. Mitochondria functionality and sperm quality. Reproduction 2013; 146:R163–R74. https://doi.org/10.1530/REP-thirteen-0178
132. Aitken RJ, Ryan AL, Bakery MA, McLaughlin EA. Redox activity associated with the maturation and capacitation of mammalian spermatozoa. Free Radic Biol Med 2004; 36:994–1010. https://doi.org/x.1016/j.freeradbiomed.2004.01.017
133. Pena FJ, Rodríguez Martínez H, Tapia J, Ortega Ferrusola C, González Fernández 50, Mcías García B. Mitochondria in mammalian sperm physiology and pathology: a review. Reprod Domest Anim 2009; 44:345–9. https://doi.org/10.1111/j.1439-0531.2008.01211.x
134. Al-Rubeai M, Emery AN, Chalder S, Goldman MH. A menstruum cytometric report of hydrodynamic damage to mammalian cells. J Biotechnol 1993; 31:161–77. https://doi.org/10.1016/0168-1656(93)90158-J
135. Evenson DP, Darzynkiewicz Z, Melamed MR. Simultaneous measurement by menstruum cytometry of sperm cell viability and mitochondrial membrane potential related to cell movement. J Histochem Cytochem 1982; thirty:279–80.
136. Kim D-S, Hwangbo Y, Cheong H-T, Park C-K. Effects of discontinuous percoll gradient containing alpha-linolenic acid on characteristics of frozen-thawed boar spermatozoa. J Anim Reprod Biotechnol 2020; 35:58–64. https://doi.org/10.12750/JARB.35.ane.58
137. Garner DL, Thomas CA, Joerg HW, DeJarnette JM, Marshall CE. Fluorometric assessments of mitochondrial function and viability in cryopreserved bovine spermatozoa. Biol Reprod 1997; 57:1401–six. https://doi.org/10.1095/biolreprod57.six.1401
138. Martínez-Pastor F, Mata-Campuzano G, Alvarez-Rodríguez M, Álvarez M, Anel L, De Paz P. Probes and techniques for sperm evaluation by flow cytometry. Reprod Domest Anim 2010; 45:Suppl 267–78. https://doi.org/10.1111/j.1439-0531.2010.01622.x
139. Marchetti C, Jouy N, Leroy-Martin B, Defossez A, Formstecher P, Marchetti P. Comparing of four fluorochromes for the detection of the inner mitochondrial membrane potential in human spermatozoa and their correlation with sperm movement. Hum Reprod 2004; xix:2267–76. https://doi.org/ten.1093/humrep/deh416
140. Boe-Hansen Thousand, Fortes MS, Satake N. Morphological defects, sperm DNA integrity, and protamination of bovine spermatozoa. Andrology 2018; 6:627–33. https://doi.org/x.1111/andr.12486
141. Santi D, Spaggiari Thou, Simoni Thou. Sperm Dna fragmentation index as a promising predictive tool for male infertility diagnosis and treatment management - meta-analyses. Reprod Biomed Online 2018; 37:315–26. https://doi.org/10.1016/j.rbmo.2018.06.023
142. De Ambrogi Thou, Spinaci G, Galeati One thousand, Tamanini C. Viability and Deoxyribonucleic acid fragmentation in differently sorted boar spermatozoa. Theriogenology 2006; 66:1994–2000. https://doi.org/10.1016/j.theriogenology.2006.05.017
143. Koonjaenak S, Johannisson A, Pongpeng P, Wirojwuthikul S, Kunavongkrit A, Rodriguez-Martinez H. Seasonal variation in nuclear Dna integrity of frozen–thawed spermatozoa from Thai AI swamp buffaloes (Bubalus bubalis). J Vet Med Series A 2007; 54:377–83. https://doi.org/10.1111/j.1439-0442.2007.00946.x
144. Morrell JM, Johannisson A, Dalin A-M, Hammar Fifty, Sandebert T, Rodriguez-Martinez H. Sperm morphology and chromatin integrity in Swedish warmblood stallions and their relationship to pregnancy rates. Acta Vet Scand 2008; 50:2 https://doi.org/10.1186/1751-0147-l-2
145. Giwercman A, Lindstedt L, Larsson M, et al. Sperm chromatin structure assay as an contained predictor of fertility in vivo: a case–control study. Int J Androl 2010; 33:e221–e7. https://doi.org/10.1111/j.1365-2605.2009.00995.x
146. Virro MR, Larson-Cook KL, Evenson DP. Sperm chromatin structure assay (SCSA®) parameters are related to fertilization, blastocyst evolution, and ongoing pregnancy in in vitro fertilization and intracytoplasmic sperm injection cycles. Fertil Steril 2004; 81:1289–95. https://doi.org/10.1016/j.fertnstert.2003.09.063
147. Boe-Hansen GB, Christensen P, Vibjerg D, Nielsen MBF, Hedeboe AM. Sperm chromatin structure integrity in liquid stored boar semen and its relationships with field fertility. Theriogenology 2008; 69:728–36. https://doi.org/ten.1016/j.theriogenology.2007.12.004
148. Waterhouse K, Haugan T, Kommisrud Eastward, et al. Sperm DNA harm is related to field fertility of semen from immature Norwegian Carmine bulls. Reprod Fertil Dev 2006; eighteen:781–eight. https://doi.org/10.1071/RD06029
149. García-Macías Five, De Paz P, Martinez-Pastor F, et al. DNA fragmentation cess by menses cytometry and Sperm–Bos–Halomax (bright-field microscopy and fluorescence microscopy) in bull sperm. Int J Androl 2007; 30:88–98. https://doi.org/10.1111/j.1365-2605.2006.00723.ten
151. Evenson D, Jost L. Sperm chromatin structure assay is useful for fertility cess. Methods Prison cell Sci 2000; 22:169–89. https://doi.org/ten.1023/A:1009844109023
152. Kazerooni T, Asadi N, Jadid 50, et al. Evaluation of sperm'south chromatin quality with acridine orange exam, chromomycin A3 and aniline blue staining in couples with unexplained recurrent ballgame. J Assist Reprod Genet 2009; 26:591–6. https://doi.org/10.1007/s10815-009-9361-3
153. Bianchi PG, Manicardi GC, Urner F, Campana A, Sakkas D. Chromatin packaging and morphology in ejaculated human spermatozoa: evidence of subconscious anomalies in normal spermatozoa. Mol Hum Reprod 1996; 2:139–44. https://doi.org/10.1093/molehr/two.3.139
154. Wagner H, Cheng JW, Ko EY. Role of reactive oxygen species in male infertility: an updated review of literature. Arab J Urol 2018; xvi:35–43. https://doi.org/10.1016/j.aju.2017.11.001
156. Raad G, Bakos HW, Bazzi M, et al. Differential impact of four sperm training techniques on sperm motility, morphology, DNA fragmentation, acrosome status, oxidative stress and mitochondrial activity: a prospective study. Andrology. 2021. May. 17[Accustomed]. https://doi.org/10.1111/andr.13038
158. Fingerova H, Oborna I, Novotny J, et al. The measurement of reactive oxygen species in human neat semen and in suspended spermatozoa: a comparing. Reprod Biol Endocrinol 2009; seven:118 http://doi.org/x.1186/1477-7827-vii-118
159. Novotný J, Oborná I, Brezinová J, et al. The occurrence of reactive oxygen species in the semen of males from infertile couples. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2003; 147:173–6.
160. Agarwal A, Bui AD. Oxidation-reduction potential equally a new marking for oxidative stress: Correlation to male infertility. Investig Clin Urol 2017; 58:385–99. http://doi.org/10.4111/icu.2017.58.6.385
161. Agarwal A, Parekh N, Panner Selvam MK, et al. Male person Oxidative Stress Infertility (MOSI): Proposed Terminology and Clinical Practice Guidelines for Management of Idiopathic Male person Infertility. World J Mens Wellness 2019; 37:296–312. http://doi.org/ten.5534/wjmh.190055
163. Baker MA, Nixon B, Naumovski N, Aitken RJ. Proteomic insights into the maturation and capacitation of mammalian spermatozoa. Syst Biol Reprod Med 2012; 58:211–vii. https://doi.org/10.3109/19396368.2011.639844
164. Brewis IA, Morton IE, Mohammad SN, Browes CE, Moore HDM. Measurement of intracellular calcium concentration and plasma membrane potential in human being spermatozoa using flow cytometry. J Androl 2000; 21:238–49.
165. Caballero I, Vazquez JM, Mayor GM, et al. PSP-I/PSP-Two spermadhesin exert a decapacitation issue on highly extended boar spermatozoa. Int J Androl 2009; 32:505–xiii. https://doi.org/10.1111/j.1365-2605.2008.00887.x
166. Piehler Due east, Petrunkina AM, Ekhlasi-Hundrieser Thousand, Töpfer-Petersen Due east. Dynamic quantification of the tyrosine phosphorylation of the sperm surface proteins during capacitation. Cytometry A 2006; 69:1062–70. https://doi.org/10.1002/cyto.a.20338
167. Kim E-J, Talha NAH, Jeon Y-B, Yu I-J. Upshot of κ-Carrageenan on Sperm Quality in Cryopreservation of Canine Semen. J Anim Reprod Biotechnol 2019; 34:57–63. https://doi.org/x.12750/JARB.34.1.57
168. Samanta L, Boyfriend Northward, Ayaz A, Venugopal V, Agarwal A. Mail-translational modifications in sperm proteome: the chemical science of proteome diversifications in the pathophysiology of male person factor infertility. Biochim Biophys Acta Gen Subj 2016; 1860:1450–65. https://doi.org/10.1016/j.bbagen.2016.04.001
170. Garner DL, Johnson LA, Yue ST, Roth BL, Haugland RP. Dual DNA staining cess of bovine sperm viability using SYBR-14 and propidium iodide. J Androl 1994; 15:620–ix. https://doi.org/10.1002/j.1939-4640.1994.tb00510.ten
171. Domínguez-Rebolledo ÁE, Martínez-Pastor F, Fernández-Santos MR, et al. Comparison of the TBARS analysis and BODIPY C11 probes for assessing lipid peroxidation in ruby deer spermatozoa. Reprod Domest Anim 2010; 45:e360–8. https://doi.org/10.1111/j.1439-0531.2009.01578.x
172. Nagy S, Jansen J, Topper EK, Gadella BM. A triple-stain period cytometric method to assess plasma-and acrosome-membrane integrity of cryopreserved bovine sperm immediately later thawing in presence of egg-yolk particles. Biol Reprod 2003; 68:1828–35. https://doi.org/10.1095/biolreprod.102.011445
173. Harper CV, Barratt CL, Publicover SJ, Kirkman-Brown JC. Kinetics of the progesterone-induced acrosome reaction and its relation to intracellular calcium responses in private human spermatozoa. Biol Reprod 2006; 75:933–9. https://doi.org/ten.1095/biolreprod.106.054627
174. Drabovich AP, Saraon P, Jarvi K, Diamandis EP. Seminal plasma as a diagnostic fluid for male reproductive system disorders. Nat Rev Urol 2014; eleven:278–88. https://doi.org/ten.1038/nrurol.2014.74
176. Tesi M, Sabatini C, Vannozzi I, et al. Variables affecting semen quality and its relation to fertility in the canis familiaris: A retrospective study. Theriogenology 2018; 118:34–9. https://doi.org/ten.1016/j.theriogenology.2018.05.018
177. Colenbrander B, Gadella B, Stout T. The predictive value of semen analysis in the evaluation of stallion fertility. Reprod Domest Anim 2003; 38:305–11. https://doi.org/10.1046/j.1439-0531.2003.00451.x
178. Rao M, Zhao X-L, Yang J, et al. Effect of transient scrotal hyperthermia on sperm parameters, seminal plasma biochemical markers, and oxidative stress in men. Asian J Androl 2015; 17:668–75. https://doi.org/10.4103/1008-682X.146967
179. Wang J, Wang J, Zhang H-R, et al. Proteomic analysis of seminal plasma from asthenozoospermia patients reveals proteins that affect oxidative stress responses and semen quality. Asian J Androl 2009; 11:484–91.
181. Viana AGA, Martins AMA, Pontes AH, et al. Proteomic landscape of seminal plasma associated with dairy bull fertility. Sci Rep 2018; eight:16323 https://doi.org/x.1038/s41598-018-34152-westward
182. Brandon CI, Heusner GL, Caudle AB, Fayrer-Hosken RA. Two-dimensional polyacrylamide gel electrophoresis of equine seminal plasma proteins and their correlation with fertility. Theriogenology 1999; 52:863–73. https://doi.org/10.1016/S0093-691X(99)00178-viii
183. Killian GJ, Chapman DA, Rogowski LA. Fertility-associated proteins in Holstein bull seminal plasma. Biol Reprod 1993; 49:1202–7. https://doi.org/ten.1095/biolreprod49.half dozen.1202
184. Harshan HM, Sankar South, Singh LP, et al. Identification of PDC-109-similar protein (due south) in buffalo seminal plasma. Anim Reprod Sci 2009; 115:306–11. https://doi.org/x.1016/j.anireprosci.2008.11.007
185. Wang YX, Wu Y, Chen HG, et al. Seminal plasma metabolome in relation to semen quality and urinary phthalate metabolites amongst Chinese developed men. Environ Int 2019; 129:354–63. https://doi.org/10.1016/j.envint.2019.05.043
186. Kumar A, Kroetsch T, Blondin P, Anzar M. Fertility-associated metabolites in bull seminal plasma and blood serum: 1H nuclear magnetic resonance analysis. Mol Reprod Dev 2015; 82:123–31. https://doi.org/10.1002/mrd.22450
188. Deepinder F, Chowdary HT, Agarwal A. Part of metabolomic analysis of biomarkers in the direction of male infertility. Adept Rev Mol Diagn 2007; 7:351–8. https://doi.org/x.1586/14737159.7.4.351
189. Aguiar GFM, Batista BL, Rodrigues JL, et al. Determination of trace elements in bovine semen samples by inductively coupled plasma mass spectrometry and data mining techniques for identification of bovine course. J Dairy Sci 2012; 95:7066–73. https://doi.org/ten.3168/jds.2012-5515
190. Bhat GK, Sea TL, Olatinwo MO, et al. Influence of a leptin deficiency on testicular morphology, germ cell apoptosis, and expression levels of apoptosis-related genes in the mouse. J Androl 2006; 27:302–10. https://doi.org/10.2164/jandrol.05133
191. Foster PMD. Disruption of reproductive development in male person rat offspring following in utero exposure to phthalate esters. Int J Androl 2006; 29:140–7. https://doi.org/ten.1111/j.1365-2605.2005.00563.ten
192. Liu L, Bao H, Liu F, Zhang J, Shen H. Phthalates exposure of Chinese reproductive age couples and its effect on male semen quality, a primary study. Environ Int 2012; 42:78–83. https://doi.org/10.1016/j.envint.2011.04.005
193. Wang Y-Ten, You L, Zeng Q, et al. Phthalate exposure and human being semen quality: Results from an infertility clinic in China. Environ Res 2015; 142:1–9. https://doi.org/10.1016/j.envres.2015.06.010
194. Norris JL, Caprioli RM. Analysis of tissue specimens by matrix-assisted laser desorption/ionization imaging mass spectrometry in biological and clinical research. Chem Rev 2013; 113:2309–42. https://doi.org/10.1021/cr3004295
195. Min K-S, Byambaragchaa M, Kim H, Park Thousand-H. Identification of sperm mRNA biomarkers associated with sexual activity-determination in Korean native cows. J Anim Reprod Biotechnol 2019; 34:111–half dozen. https://doi.org/x.12750/JARB.34.two.111
197. Intasqui P, Agarwal A, Sharma R, Samanta Fifty, Bertolla RP. Towards the identification of reliable sperm biomarkers for male person infertility: a sperm proteomic approach. Andrologia 2018; 50:e12919 https://doi.org/10.1111/and.12919
198. Selvaraju South, Parthipan S, Somashekar 50, et al. Occurrence and functional significance of the transcriptome in bovine (Bos taurus) spermatozoa. Sci Rep 2017; vii:42392 https://doi.org/10.1038/srep42392
199. Słowińska M, Paukszto Ł, Jastrzębski JP, et al. Transcriptome analysis of turkey (Meleagris gallopavo) reproductive tract revealed fundamental pathways regulating spermatogenesis and mail service-testicular sperm maturation. Poult Sci 2020; 99:6094–118. https://doi.org/10.1016/j.psj.2020.07.031
200. Cho J, Uh K, Ryu J, et al. Development of PCR based approach to find potential mosaicism in porcine embryos. J Anim Reprod Biotechnol 2020; 35:323–eight. https://doi.org/ten.12750/JARB.35.4.323
201. Kim South, Cheong HT, Park C. Regulation of the plasminogen activator activity and inflammatory surround via transforming growth factor-beta regulation of sperm in porcine uterine epithelial cells. J Anim Reprod Biotechnol 2020; 35:297–306. https://doi.org/x.12750/JARB.35.four.297
202. Khalil WA, El-Harairy MA, Zeidan AE, Hassan MA, Mohey-Elsaeed O. Evaluation of bull spermatozoa during and later cryopreservation: Structural and ultrastructural insights. Int J Vet Sci Med 2018; 6:S49–S56. https://doi.org/ten.1016/j.ijvsm.2017.11.001
203. Carvalho JO, Sartori R, Machado GM, Mourão GB, Dode Human. Quality assessment of bovine cryopreserved sperm afterward sexing by flow cytometry and their use in in vitro embryo production. Theriogenology 2010; 74:1521–thirty. https://doi.org/10.1016/j.theriogenology.2010.06.030
204. Capra Eastward, Turri F, Lazzari B, et al. Minor RNA sequencing of cryopreserved semen from unmarried bull revealed altered miRNAs and piRNAs expression betwixt Loftier-and Low-motile sperm populations. BMC Genomics 2017; 18:14 https://doi.org/ten.1186/s12864-016-3394-7
205. Miller D, Ostermeier GC. Towards a better understanding of RNA wagon by ejaculate spermatozoa. Hum Reprod Update 2006; 12:757–67. https://doi.org/10.1093/humupd/dml037
206. Lalancette C, Miller D, Li Y, Krawetz SA. Paternal contributions: new functional insights for spermatozoal RNA. J Cell Biochem 2008; 104:1570–ix. https://doi.org/ten.1002/jcb.21756
Source: https://www.animbiosci.org/journal/view.php?number=24699
0 Response to "Flow Cytometry for the Assessment of Animal Sperm Integrity and Functionality State of the Art"
Post a Comment